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XIIth GENERAL ASSEMBLY, IAU

Hemburg, Germany

I. INTRODUCTION

The pioneer theoretical investigations of Burbidge (1959) [1] and of
Shklovsky (1960) [2] have shown that the observations on the extended radio
sources imply the generstion, storage and emission of prodigious amounts of
energy, in round numbers of the order of 107 Maca ~-1061 ergs Oor even more.

On the very general grounds that the ultimate source of energy is the con-
version of mass, it is thus clear that very large condensations of matter in
some form or other are, or have been, associated wi:.: the radio sources.
Burbidge (1962) [3] suggested supernovae explosions in large aggregates of
stars as a possible mechanism for the originel generation of the energy in-
volved.

In the summer of 1962, after conversations with Geoffrey and Margaret
Burbidge, Hoyle and I (1963a,b) [4,5] investigated whaf is perhaps the simplest
of many possible models, namely that a mass of the order of lO8 MDCZ or greater
has condensed into a single star in which the energy generation takes place.

On this point of view, using the standard theory of stellar structure, one
immediately obtains optical luminosities of the order of 101!‘6 ergs/seq and
lifetimes for nuclear energy generation of the order of lO5 to lO6 years so
that the overall energy release is 1059 ergs. These figures roughly match

the observational data for the so-called guasi-stellar objects subsequently
discovered by Schmidt (1963) [6]. Hoyle and I were seeking an explanation of
the energy requirements for extended radio sources and found that our modei i
had a large optical luminosity. Problems in the stability of massive stars g
arise, as will be discussed in detail below. Questions of stability aside,

it is apparent that nuclear energy generation by hydrogen burning in massive




gtars with M -108 MD is adequate to match the energy requirements in. the
éuasi-étellar objects. . .

However, the energy requirements for the extended radio sources involve nuclear
burning in stars with M *-lOlo MD or even more. This assumes that hydrogen burning
with 0.7% conversién efficiency goes to completion in about 15% of the stellar mass,
giving an overall efficiency of ~ 0.1% and an energy output -107 waca. The
efficiency of conversion of thermal energy into that of the high energy electron
and magnetic fields necessary to give the synchrotron radio emission may only be
of the order of 1% of even less. In this case nuclear burning in stellar masses
approaching total galactic messes, ~'1012 MD’ is required. ©Since there is no
observational evidence for such wholesale nuclear conversion in the galaxies asso-
ciated wiﬁh the extended radi§ sources, Hoyle and I suggested gravitetional collapse
t0 the general relativistic limit as another possible source of energy. In prinéi-
ple all of the rest mass can be converted to energy in gravitational collapse |
although this requires that 2GM/Rc2 approach unity. It was realized that this
ultimate 100% efficiency was probably not attainable during the collapse of an
ectual star because of the large red shifts in all forms of energy emission when
2GM/R02 ~ 1. Even so, the conversion of gravitational energy seemed more attractive
to us then matter-antimatter annihilation which is also 100% efficient in the limit.
We were unable to suggest a satisfactory model for the assembly of the matter and
antimatter under realistic conditions. It did not seem unrealistic to éuggest that
a massive star of one type of matter could condense from the gas and smaller stars
of a large galaxy, most probably in the galactic nucleus.

Feynman (1963) [7]) first pointed out to us that general relativistic insta-
bilities set in at e very early stage in the condensation of massive stars.
Following Feynman's suggestion, Iben (1963) [8] carried out exact numerical inte-
grations of the relativistic equations for a number of polytropes and confirmed

Feynman's ideas. In my own work (Fowler, 1964a,b) [9,10] I have found that the

first order post-Newtonian aspproximation is sufficient to illustrate the general



thsicql principles involved and is particularly useful in investigations of the
éonditfons under which nuclear reactions occﬁr in hassive stars.

Let me hasten to say that Chandrasekhar (1964a,b,c) [11,12,13] has now given .
in very elegant form the exact treatment of the dynamical instability of massive
stars. After some initial disagreements concerning numerical values, when we both
performed our sums correctly [10,12], agreement was reached on such matters as the
radius for the onset of instability and so forth. Since the Dallas conference in
1963 this field of study has become a very active one, and in particular, McVittie
(1964) [14] Gratton (1964) (15] and Zel'dovich (1964) [16] have independently made
significant contributions in the approach to the solution of the problem. At the
Californiq Institute of Technology, Jsmes Bardeen is carrying out numerical calcu-

lations on the dynamical collapse using the IBM 709%.

2. BINDING ENERGY OF A MASSIVE POLYTROPE IN
HYDROSTATIC EQUILIBRIUM
The binding energy EB of a star is equal but opposite in sign to the total
energy E exclusive of the rest mass energy and, when the star has radius R, is
given by

-EB=E=(M-MO)02 | (l)

where M = M(R) is the mass of the star and Mo is the total rest mass of its con-
stituent particles. M is to be determined in principle by measuring the force
exerted on a unit mass at a large distance (>> R) from the star and then using
Newton's inverse square law of gravitational attraction. On the other hand, Mo
can be measured by identifying and counting the constituent particles and mltiply-
ing by the appropriate rest mass.

One now employs the general relativistic equations for M and M° and the
" general relativistic equation for hydrostatic equilibrium throughout the star.
Each expression in these equations 1is appropriately expanded in terms proportional

to integral powers of the gravitational constant G and only the'Newtonian term



ard the.next higher order term are retained. In this way [9,10] the post-Newtonian
approximation for the total energy of a spherically symmetric, non-rotating star

under hydrostatic equilibrium is found to be

2
_ 2 8xG 6nG 2 ,
Eeq = - 6n [Ppr-dr + :5- fperdr + 2 ,f;:vMr dr (2)

vhere r is the radial coordinate, p is the pressure, p is the mass-energy density
expressed in mass per unit volume, Mr is the mass interior to r and P .is the ratio
of gas pressure to total pressure (gas plus radiation). In order to appreciate the
order of the terms in equation (2) it should be noted thet p is linear in G in the
approximation under discussion so that the first term on the right hand side of
equation (2) is the classical Newtonian term and the last two are the post-Newtonian
terms. In deriving equatioh (2) it was assumed that the stellar material is com-
pletely ionized into electrons and nuclei but that the temperature is below T = 109
degrees so that special relativistic effects for electrons and electron-positron
pair formation can be neglected. Under these conditions the internal energy of
particles and radiation per emd® 1is given by 3p(1 - B/2).

It is illuminating to express the classical term, which will be designated as

Eéé), in terms of the appropriate average for B throughout the star. Thus

E&) = - 6x(B) [priar = - % (B) [3pav
= - 2 (B)A (3)
(B), @
=~ 2(G-n) R

Here the gravitational binding energy ), taken as a positive quantity, has been

. introduced. It is well known in classical hydrostatic equilibrium that Q = f3pdv

and that for a polytrope of index n, Q = SGM?/(S-n)R. In the approximation under

" consideration it is not necessary to distinguish between M and Mo and so the super-

fluous subscript has not been retained. In the last form of equation (3) the

dependence of (B) on the polytropic index is made explicit by appending the




$ﬁbscr;pt n.
The classical binding energy per unit mass i1s obtained by dividing equation
(3) vy Mc® to obtain |
5 s(e), (R, |
Mc2 =-W<R> ®)
where Rg = 2GMl/c2 =3 x 10° (M/MD) cm is the limiting gravitational radius or

Schwarzschild limit and the right hand side of equation (4) is the first and linear

term in 8 power series in the dimensionless parameter Rg/R = 2GM/Rc2. The post-
Newtonian terms are, of course, quadratic in this parameter. For polytropes of
index n, the post-Newtonian expression for the binding energy per unit mess can

be reduced to

2
E 3(B)_ /R R
eq = n L X N
- <‘i§> L ('15) * (5)
c
where
2 Rn R
_ .3 Sg_ o 20+l §hd§ 1o n+2 e2ae (6)
En = 8(n+1) M2 ®n 042
R N 0 ,

In equation (6), & is the dimensionless radial variable used by Chandrasekhar (1938)
[17] in treating polytropes, Rn is the value of £ at the surface of the polytrope,
6, = On(ﬁ) is the Lane-Emden function for the polytrope end M = - §2d9n/d§ at the
polytropic surface. Mh is a dimensionless measure of the mass of the polytrope.

It will be recalled that the run of the variables throughout the polytrope are
given by p = pcen and p = P, 0 n+l where the subscript c¢ designates central values.

For a nondegenerate gas (T/uB) = (T/uﬁ)cgn-

Equation (6) can be evaluated analytically for n = 0, 1, and 3 and the results

are )
57 1 3 (32 _
8o = 5gg = 02036, ¢, == =0.3185 and s =35 (ﬂ) Ry = 1.264 (7)
where R, = 6.897 has been used.
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3. THE CRITICAL RADIUS, TEMPERATURE AND DENSITY FOR
THE ONSET OF DYNAMICAL INSTABILITY
The coefficient {, is positive and thus the internel energy required for hydro-
static equilibrium eventually becomes positive, the binding energy is negative and
the system is unbound rather than bound. The energy goes through a minimum or the‘_

binding energy through a maximum at a critical radius given by

Eg_ = 8(5-1’1) gn - ll(S-g) gn i (e)

R,"75 (B, 9 (A3,

This ratio is 19/7 (B 2.71&/(6)0 for n = 0, 32/3x (8); = 3.395/(5)l for n =1
and (3/«)% R3/63 = 6.7&0/63 for n = 3, For n = 3, B is a constant throughout the
polytrope and averaging is unnecessary. In the last form of equation (8) the rela-
tion l“l-h/ 3~ B/ 6 has been employed as a fair approximation in massive stars. I‘l
is the first of the adiabatic coefficients defined in [17]. The results for Rc/Rg
are identical to those obtained in [11,12,13].

The early onset of stability can now be traced to the fact that Rc is inversely
proportional to (B)n which is small for massive stars. Fowler and Hoyle (196k4) [lB]

have shown in massive stars that
1 .
N % M \2
13 3 8% n (n-3)/4
B = m [’;{ (n+1) ——aGs] (M) o, (9)

where p is the mean molecular weight and the other symbols have the customary mean-

ings. Tor a polytrope of index n = 3, B is constant throughout the polytrope and

%
p = ﬁ(%—) (10)

M

is given by

This expression holds roughly for the average value throughout any polytrope and
for hydrdgen with u = % yields B ~ 10-3 in a polytrope with mass M = II.O8 Nb. The
upshot is that R e is several thousand times Rg for such a mass, the actual factor
being sensitive to the polytropic index. It is interesting to note that (5), (8)
and (10) yield Egq ™ 2 Nbc2 ~ L x 105 ergs at the minimum for all large masses.
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The onset of instability below the critical radius
R, ~2.3 X 10° (M/yb)s/e em (n=3, n=3) (11)

can be understood in the following way. Conéider an adiabatic cor ..ession at a
point below the critical radius. Hydrostatic equilibrium after the perturbation
requires more internal energy and pressure than before and since this is not made
available in the adiabatic compression, further collapse ensues. Consider an
adiabatic expansion. Now hydrostatic equilibrium requires less internal energy
and pressure than given adiabatically so expansion continues. Clearly the radius
at which B reaches a minimum is critical in this regard. At larger radii the de-
crease in the equilibrium energy as R decreases gives the well known classical
stability. When an actual star reaches the critical radius it will lose energy
by radiation and the general relativistic instability will lead to collapse rather
than expansion unless some internal energy resource can be called upon.

Can nuclear energy supply the energy neceésary to halt the genersl relativ-
istic collapse and perhaps even reverse the motion by supplying more than that
required by equation (5) for hydrostatic équilibrium? This is a problem still
under attack but this much can be made clear. The central temperature and the
central density at criticality can be shown [9,10] to be relatively insensitive to

the polytropic structure in contrast to the outer radius and are given by

2.5 x 10 (M/M) degrees - (12)

=
]

2.0 x 108 (Nb/M)7/2 gm e (13)

It

Pe

It will ve noted that the critical values are only Tc = 2.5 X 10S degrees and

b, = 2.0 x 1072% gu em™ for M = 10° M. The density is very small indeed but it

c
' will be recalled that the central density at the Schwarzschild radius for a poly-

trope of index 3 is only -~ 100 gm cm-s. The main point is that general relativ-

istic considerations come into play in massive stars long before central temperatures

and densities necessary for nuclear reactions to take place are reached. For
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‘hydrogen burning, T ~8 X 107 degrees at p ~10” .gm em™> are required.

4, GENERAL RELATIVISTIC GRAVITATIONAL COLLAPSE
Nuclear energy or any form of energy must thps be generated during the collapse
stage and the time scale for collapse becomes highly relevant in connection with
generation rates per unit time. The hydrodynamic equation for the acceleration in

the post-Newtonian approximation can be written

av o 1ep el M%) (1)
at = .2 p dr 2 2
dat r re

where M.r is the mass interior to r. The numerical coefficient of the post-Newtonian
term is approximately correct only for the polytrope with index n = O (constant 5)
and then only in hydrostatic equilibrium. Howeven, equation (14) is sufficiently
accurate for our present purposes.

In classical free fall the pressure gradient in a star is set equal to zero
and the acceleration is Jjust that due to the gravitstional forces. The increase
in kinetic energy of fall can be readily computed from the change in the gravita-
tional potential energy. Starting from rest at a radius large compared to R, the
veloclity of free fall at R is

o \2
—~) (15)

v = ¢
tf (Rc2

and the charscteristic e-folding time in R or T, = 7/10° 1s
2 % 3/2 },b %
T = R BRe_ = 103 R -] secC
ff c \ 2aH Ry M
1
. 160 < M >u sec
(T8)§72 ¥

~ 2X 10h sec for M = 10° Mo (TB')C = 0.8 (H-burning) (16)

It can be argued that the gravitational collapse is not free fall but arises from

the post-Newtonian terms in the general relativistic expressions for the pressure



gradient. The pressure gradient would just be balanced by the classical terms
if general relativity were not teken into account and hence to order of magnitude
the acceleration is equal to the post-Newtonian term. The kinetic energy per unit

mass becomes equal to % e? (2GM/Rc2)2 not Just % e? (2GM/Rc2) and so

= ()
€ Re

Note that v .~ Ve~ c in the limit 2@W/Rc? = 1.

ff
The e-folding time is

2 2 WD
R{Re ) _ S[RY (B
'rgc = = <2GM> =5 X 10 <fb> <M> sec

s > sec independent of M
(Ty)
8
c
~ 10° sec ~ 1 day, (Tg) = 0.8 (17)
c

We are reminded of the quotation from The Lucky Chance by Aphra Benn (1640
-1689): "Faith, sir, we are here to day, and gone to morrow." In spherically
symmetric general relativistic collapse the time scale for the release of nuclear
energy is very short and for M ZlO7 MD the collapse 1s probably not stopped.
However, for M < 107 M, the nuclear resources would seem to be adequate to stop
and reverse the collapse. Oscillations of the star then become possible if
adequate modes of energy transmission to and emission from the surface are avail-
able. It can be shown that ordinary thermal mechanisms are grossly inadequate.
Shock wave phenomena leading to the generation of high energy particles presumably
come into play and may well lead to the excitation of the HII and radio-émitting_

regions surrounding the quasi-stellar objects. Detailed calculations are underway

in Pasadena on these problems.
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XITIIth SOLVAY CONGRESS

Brussels, Belgium

I. FIRST DISCUSSION

The formastion of massive stars in the range loh‘to 10lo MD has come to be of
considerable interest in connection with the possible release of gravitational
energy in order to meet the energy démaqu in extended radio sources. Numerous
investigators in many countries, including Feynman, Iben, Chendrasekhar, Gratton,
Zel'dovich, Hoyle and myself, havé shown that massive stars with spherical symmetry
exhibit an instability which follows directly from general relativistic considera-
tions. Chandrasekhar has given a very elegant and exact proof of this instability.
My own calculations deal only with the post-Newtonian approximation, but give
results identical to Chandrasekhar's in the appropriate limit, while at the samé
time making the physical considerations involved quite clear and transparent.

Consider a spherically symmetric, non-rotating polytrope of index n, gravita-
tional mass M, and radius R, in hydrostatic equilibrium. It is well known that
the internal energy E, exclusive of the rest mass energy M002 of the constituent
particles, and the binding energy EB’ are gliven on the basis of Newtonian mechanics
by

E=-EB=(M-M°)c2=%Bn=-22‘_3n (%ﬁ) (1)

where Q is the gravitational potential energy and B = pg/(pg + pr) is the ratio
of gas pressure, pg, to total pressure, that of gas and radiation, P When
Eddington's quartic equation is solved for massive polytropes it is found that

1
2 .
B ~ ﬂ’(%—) , (2)

m

where u is the mean molecular weight equal to % for pure hydrogen. This expres-
sion holds throughout a polytrope with index n = 3 but is aspproximately correct

in the central regions of any polytrope. It will be noted that B is quite sm~11



for massive stars being ~:LO":5 for M = 108 r:b. Thus the Newtonien term in the
binding energy is relatively small in massive stars.
In order to fully appreciate the general relativistic effect in the binding

energy it is best to divide by Mc® to obtain

- 2 - - i) <3>

£
Mc2 M Re

where now the dimensionless parameter 2GM/RC2 appears. It will come as no surprise

!

that the post-Newtonian approximation introduces a term in the square of this

parameter so that for a polytrope of index n = 3, for example, one finds

E Ep 3 2GM> (2@4)2
S Eem = - B S5+ 12688 5] 4 e (&)
Mc2 Mc2 B 8 (Rc:2 Rc2

In this approximation it is not necessary to distinguish between rest mass, Mo’

and gravitational mass M as long as 2GM/Rc2 is small. Thus the internal energy
required for hydros:t.atic equilibrium eventually becomes very large and positive,
the binding energy is negative, and the system is unbound rather than bound. The
energy goes through a minimum or the binding energy through a meximum at a critical

radius given for n = 3 by ‘

6.740
R, = 5 Rg (5)
and for n = 0 by
19
R, = %3 Rg (s)
where
20M S/ M
R = =—=—=23X10|(7—]com 7
- (%) )

is the limiting Schwarzschild radius. Because of the smallness of B this critical

radius is considerably greater than Rg and can be expressed for u = %—, n=23asas

. 3
: 2
R, = 2.3x105<—1!-) cm (8)

%

which becomes 2.3 X 1017 cm for M = 108 }«b. Unfortunately the critical radius is .

12



‘quite.sensitive to the polytropic index Juét as ére all radius paremeters in poly-
tropic structures. As n approaches 5, Rc rapidly diverges. Thus comparisons with
observations on the radii of massive "cores" in quasi-stellar objects are subject
to considerable uncertainty since details of the internal structure of the core
are involved.

On the other hand,;it can be shown that the central temperature and the central
density are not greatly sensitive to the polytropic strﬁcture and the critical
values are given by

13 , :
T, = 2.5 X 10 Nb/M degrees (9)

and

p, = 2.0 x 10*° (»40/M)7/2 gn cm™> (10)

4

The numerical coefficients displayed hold for n = 3 but are fair approximations

for n = 0 to 5. It will be noted that the critical values are only Tc = 2.5 X 105

10 gm em> for M = 10° M. The density is very small

degrees and p_ = 2.0 X 10
indeed but it will be recalled that the density at the Schwarzschild radius for a
polytrope of index 3 is only ~ 100 gm cm-s. The main point is that general
relativistic considerations come into play in massive stars long before central
temperatures and densitles necessary for nuclear reactions to teke place are
reached. For hydrogen burning T ~8 X lO7 degrees at p *—102 en cm"3 are required.-
The general relativistic instability follows directly from the fact tha£ E
increases below the critical radius or above the critical temperature and density,
this behavior being just the opposite to that before the critical conditions are
reached. Consider an adiabatic compression at a point below the critical radius.
Hydrostatic equilibrium after the perturbation requires more internal energy and
pressure than before and since this is not made available in the adiabatic‘com-

pression, further collapse ensues. Consider an adiabatic expansion. Now hydro-

static equilibrium requires less internal energy and pressure than given

13



.édiabatically 50 expansion continues. Clearly the radius at which E reaches a
minimum is criticel in this regard. At larger radii the decrease in the equi-
librium energy as R decreases gives the well known classical stability. When an .
actual star reaches the critical radius it will lose energy by radiation and the
general relativistic instability will lead to collapse rather than expansion
unless some internal energy resource can be called upon. As noted above this
cannot be nuclear energy until the collapse is well advanced. Whether the onset
of nuclear enefgy generation can halt and eventually reverse the collapse is now
a matter of extensive study by several groups. Considerations are also being
given to the effectiveness of other stabilizing ggents such as rotation, frag-
mentation, internal turbulence and entrained magnefic fields.

It is also of interest to point out thet the luminosity of a massive star is
not greatly sensitive to the polytropic structure being given by L ~2 X lO38 M/MD
ergs sec;l vhich yields 2 X th'6 ergs sec"l for M = 108 MD‘ It is this result
which is of particular interest in connection with the observed luminosities of

the quasi-stellar objects.

2. SECOND DISCUSSION
It is natural that nuclear physicists should be preoccupied with the source
of the energy in radio galaxies and quasi-stellar objects. Energy generation in
stars by means of exothermic nuclear reactions has stimulated many interesting and
fruitful researches in nuclear physics. In approaching these new problems we are
accustomed to begin with Einstein's mass-energy equation, E = Mca. However, this

can be quite misleading. It is better to write
E=-B = (M-M)2=2x10" (M -M)/M ergs (11)
=-Ep= o - 0)/Ye ’

where E is the energy (exclusive of rest mass energy) of a system composed of

particles with total rest mass M  when by some mechanism of interaction the mass,

measured gravitationally by en external observer, has been reduced to M. Ep is

%



tlie positive binding energy of the system which has been released by the interac- ‘

tion and is the energy store available for transformation at varying efficiencies
into various observable forms -- optical emiésion, radio emission, neutrinos, high
energy particles and so forth. In thé numerical expression the masses are ex-
pressed in solar units.

In principle it is possible to reduce M to zero but not to negative values
and s0 the maximum available energy is indeed M°c2. One mechanism by which this
can be accomplished is annihilation of equal amounts of matter and antimatter.

No detailed theory 1s available of the way in which advantage can be taken of .
annihilation in the radio objects but this mechanism mey indeed be the ultimate
solution to the energy problem.

G. R, Burbidge has reviewed the energy requirements for us. For the
quasi-stellar objects shining at 101+6 ergs in the opticael range over an estimated
interval of l.O6 years, the total requirement is 3 X 1059 ergs. Radlo emission
by these objects is lower by one or two orders of magnitude. It is important to
emphasize that this requirement can be met by the nuclear resources of a super-
massive star or a number of massive stars. Hydrogen burning yields 0.007 of the
rest mass in energy and perhaps 25% of a massive star can be converted to helium
while on the msin sequence, The overall yleld is thus 3 X 10Sl ergs per solar mass
involved and the stellar mass required is lO8 MD’ close to the mass assigned to
the core of a quasi-stellar object by Schmidt in one of his models.

The problem does not lie in the energy résources but in the instabllity of
massive stars which I have previously discussed at this Congréss, and in more

detail in the Reviews of Modern Physics 36, 545 (1964). The central temperature

at the onset of general relativistic instability in a non-rotating, spherically

symmetric massive star is insensitive to the polytropic structure and is given by

13
T, ~ 2.5Xx 10 Mo/M degrees (12)




Yhich becomes Tc = 2,5 X 105 degrees for M = 108 MD‘ This is to be compared withv
the teémperature at which hydrogen burning begins in massive stars, namely

TE ~ 8 X lO7 degrees. Thus general relativistic instebility sets in long before
hydrogen burning begins, collapse is initiated and it is a question of whether the
onset of the burning can reverse the collapse and restore some semblance of stable
equilibrium. Rotation, fragmentation, internal turbulence and entrained magnetié
fields probably serve as additional mechanisms in this regard. The simpler problem,
ignoring these agents, is under detailed study at Caltech, notably by Mr. James
Bardeen using the full panoply of the general relativistically correct dynamic
equations. My own interest lies primarily in the nuclear reactions involved. If
carbon, nitrogen or oxygen nuclei are present, the hydrogen burning occurs through
the répid CNO bi-cycle in which proton captpre by radioactive nuclei such as le,
015 and Fl7 occurs at a rate comparable to that of their intrinsic beta decays.

The nuclear reactions in massive stars composed initially of pure hydrogen are of
considerable interest in that such stars may well have produced substantial amounts
of helium and even some heavier elements early in the history of the Galaxy. The
pp-interaction to form deuterons is much too slow to be effective on the short time

scale available under collapse conditions and the first effective nuclear process

is electron capture by protons to produce neutrons and neutrinos according to
p+e + n+v. (13)
The neutrons are in turn captured by protons to form deuterons by

n+p > d+17, (14)

and the deuterons then interact in a variety of ways to form alpha-particles by

reactions which cen be symbolically represented by

24 -+ «. (15)

The temperatures and densities at which these hydrogen to helium conversion pro-

cesses occur are high enough~that the alpha-particles prbduce 012 through the
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well known Salpeter-Hoyle process .

a o o2 ' (16)

The resultant 012 initiates the CNO bi-cycle and leads to rapid catalytic proces-
sing of hydrogen into helium.' Additional proton, neutron and alpha-particle
reactions lead to the formation of still hesvier elements. In this way it may
prove possible to account for the substantial amounts of helium and the traces
of heavier elements thought to exist in the oldest stars, Pop II, in the Galaxy.
Only detailed computer calculations can yield the ultimate solution to these
problems. |

We have emphaslized that general relativistic instability end not lack of
energy resources is the main difficulty in associating large masses with the cores
of the quasi-stellar objects. The situation is quite different for the extendeq
radio sources associated with elliptical galaxies where & realistic estimate of
the various efficiency factors involved in the ultimate release of energy in the
radio range leads on the basis of current knowledge and conventional ideas to a
difficult and perhaps paradoxical situation.

Burbidge has t0ld us that the minimum energy stored in relativistic electrons
and magnetic fields in the extended radio sources is of the order of lO59 ergs.
The magnetic field need not be far different from the equipartition value in
either direction for this stored energy to be ten times higher, namely,Aloao ergs.
If relativistic protons are associated with the electrons to give a neutral plasma
the energy becomes 2 x lO61 ergs. Biermann has pointed out that known events in
vhich relativistic particles are produced, such as solar flares, have efficiencies
for energy transfer into the relativistic domain at most equal to 1%. On the basis

3

the raw energy supply must be 2 X lO6 ergs, the full energy equivalent of lO9

solar masses. Sandage has associated the radio sources with large elliptical
galaxies for which the mass is thought to be 1012 %D' The radio ellipticals

differ very little in sppearance from the ordinary ellipticals and only the nucleus
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has prbbably been involved in the violent evéﬁt wﬁich led to the development of
the radio source. On this basis one is tempted to associate not more than 1% or
101'0 MD with the energy production. To obtain the energy equivalent of iog ”3

it is then necessary that the raw energy production mechanism be at least 10%
efficient. Nuclear production fails in this regerd and as g corBequence Hoyle
and Fowler suggested the release of gravitational binding energy in massive stars
as another possibility. It is now realized that relative red shifts greater than
10% occur when the energy release exceeds 10%. Thus the rate of emission of
energ& in any form is greatly retarded for strongly bound, collapsing systems

and it is difficult to find actual physical mechanisms which release the gravi-
tational energy rapidly enough under this handicap. Several celculations have
indicated that 10% is a practical upper limit for the energy released before the .
Schwarzschild radius is reached and the red shift becomes infinite., If this
practical limit is'reached in lOlo MD the raw energy release Just matches that
required. However, it is difficult to assess the accuracy of our estimates for
the various efficiency factors involved. It may well prove the case that large
scale magnetohydrodynamic activity can lead to high energy particle production
with far greater than 1% efficiency and may involve far more than 1% of the mass
of 8 galaxy. On the other hand, the limitations arising from the instability end
short time scales pertaining to massive systems according to general relativity
theory may be removed if unconventional modifications of this theory, such as

those of Hoyle and Narlikar, prove in the long run to correspond more closely to

reality.
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